

PySci

This module attempts to provide a more Pythonic interface to the QsciScintilla [http://www.riverbankcomputing.co.uk/static/Docs/QScintilla2/classQsciScintilla.html]
editor widget. Although QsciScintilla is a rich and full-featured editor widget
that works nicely with PyQt4, its API is very C-like, and feels too low-level in
the context of a Python application. PySci was developed to bring a more
idiomatic Python approach to QsciScintilla.

Until PySci is officially released, you can install it from GitHub like so:

$ git clone git://github.com/wapcaplet/pysci.git
$ cd pysci
$ pip install .

PySci uses the MIT License [http://www.opensource.org/licenses/mit-license.php].

Contents

	Usage
	Configuration

	Settings Widget

	Future Plans
	Missing methods

	API
	editor

	enums

	settings

	util

Indices and tables

	Index

	Module Index

	Search Page

Usage

Here’s a very simple PyQt4 application using the PySci editor widget:

from PyQt4 import QtGui
from pysci import PySci

if __name__ == '__main__':
 app = QtGui.QApplication([])
 editor = PySci()
 editor.show()
 app.exec_()

The PySci widget is a subclass of QsciScintilla [http://www.riverbankcomputing.co.uk/static/Docs/QScintilla2/classQsciScintilla.html], so you can use it in
all the same ways you would normally use that widget. For some of the additional
features it provides, read on.

Configuration

QsciScintilla makes heavy use of enumerated types with individual getters and
setters for configuration settings. PySci borrows a more Pythonic approach
from Tkinter [http://www.pythonware.com/library/tkinter/introduction/widget-configuration.htm], with the following features:

	Arbitrary configuration settings are accepted by the widget constructor

	Multiple settings can be configured with a single method call

	Plain strings can be used instead of enumerated types

For example, with QSciScintilla alone you might need six lines of code to create
an editor widget and configure it the way you want:

editor = QsciScintilla()
editor.setWhitespaceVisibility(QsciScintilla.WsInvisible)
editor.setBraceMatching(QsciScintilla.SloppyBraceMatch)
editor.setWrapMode(QsciScintilla.WrapWord)
editor.setTabIndents(True)
editor.setTabWidth(4)

With PySci, this can be condensed into a single constructor call:

editor = PySci(
 whitespaceVisibility = 'WsInvisible',
 braceMatching = 'SloppyBraceMatch',
 wrapMode = 'WrapWord',
 tabIndents = True,
 tabWidth = 4)

Additional configuration changes can be made via the configure method:

editor.configure(
 indentationGuides = True,
 eolVisibility = True,
 edgeColumn = 72)

You can also get or set individual configurations by passing their name as a
string to the get_config or set_config methods:

eol_mode = editor.get_config('eolMode')
editor.set_config('eolMode', 'EolMac')

This can be useful if you have setting names in variables.

Settings Widget

Considering the enormous number of methods in QsciScintilla for dealing with
configuration settings, it’s a little surprising that a dedicated configuration
widget is not provided. If you’ve worked with QsciScintilla with any seriousness,
you’ve probably built an ad-hoc configuration widget yourself (and so has
everyone else). That’s a shameful duplication of programming effort. PySci
provides a ready-made one called PySciSettings to save you the trouble.

Here’s an example of what it looks like:

[image: _images/pysci_settings.png]
To use it, connect an event handler to a button or menu entry, then instantiate
PySciSettings, passing it your PySci editor instance:

from pysci import PySciSettings
settings = PySciSettings(editor)

All changes to configuration settings in this widget take effect in realtime in
the associated PySci widget.

Future Plans

As of this writing, PySci is a fairly minimal wrapper around the existing
QsciScintilla widget. It provides a few convenience features, but nothing
earth-shattering. Here are some features that may appear in the future:

	Support for choosing syntax highlighting for any of the language lexers that
QsciScintilla supports

	Direct attribute-based wrappers around the getter/setter methods

	Loading and saving of files, with auto-detection of syntax highlighting based
on filename extension

	Loading and saving of PySci configuration preferences

	Built-in docstrings for the standard QsciScintilla methods

Missing methods

QsciScintilla provides several “setter” methods with no “getter” counterpart.
For example, many of the methods for specifying colors:

	setMarginsBackgroundColor

	setMarginsForegroundColor

	setCaretLineBackgroundColor

	etc.

Once a color is set, there’s no way to retrieve it later. In other words, these
are write-only attributes.

Another feature that is lacking from QsciScintilla is the ability to easily
retrieve geometry information. For instance, what if you need to know the
Y-coordinate in screen pixels of a given line in your editor widget? Or a
bounding rectangle around the text in a given line? Many of the other PyQt4
widgets provide such methods, but QsciScintilla doesn’t. PySci aims to remedy
this, making the widget fit more closely with its Qt counterparts.

API

This is the PySci API documentation, autogenerated from the source code.

	editor

	enums

	settings

	util

editor

enums

settings

util

Index

 _static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		PySci

 		Usage

 		Configuration

 		Settings Widget

 		Future Plans

 		Missing methods

 		API

 		editor

 		enums

 		settings

 		util

_images/pysci_settings.png
Indentation Formatting

Tab width [a [f] whitespace [invisible 2]

Tab indents Line Endings Unix sl

Backspace unindents s o

Autorindent

Indentation guides w 5D

Use tab character O Tetcolor [|
e Paper color

Edge Mode | Line Coding aids

Wrap Mode | Word ¢| Brace Matching

Text width 80

Folding

oK

